{ "id": "1303.1057", "version": "v1", "published": "2013-03-05T15:00:22.000Z", "updated": "2013-03-05T15:00:22.000Z", "title": "Intertwining operators between line bundles on Grassmannians", "authors": [ "Dmitry Gourevitch", "Siddhartha Sahi" ], "comment": "7 pages", "categories": [ "math.RT" ], "abstract": "Let G=GL(n,F) where F is a local field of arbitrary characteristic, and let $\\pi_1,\\pi_2$ be representations induced from characters of two maximal parabolic subgroups $P_1,P_2$. We explicitly determine the space $Hom_G(\\pi_1,\\pi_2)$ of intertwining operators and prove that it has dimension at most 1 in all cases.", "revisions": [ { "version": "v1", "updated": "2013-03-05T15:00:22.000Z" } ], "analyses": { "subjects": [ "22E50", "44A05", "44A12" ], "keywords": [ "intertwining operators", "line bundles", "grassmannians", "maximal parabolic subgroups", "arbitrary characteristic" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.1057G" } } }