{ "id": "1303.1041", "version": "v3", "published": "2013-03-05T14:14:27.000Z", "updated": "2013-04-15T20:29:04.000Z", "title": "Jordan Blocks of H^2(D^n)", "authors": [ "Jaydeb Sarkar" ], "comment": "14 pages. Revised. To appear in the Journal of Operator Theory", "categories": [ "math.FA", "math.OA" ], "abstract": "We develop a several variables analog of the Jordan blocks of the Hardy space $H^2(\\mathbb{D})$. In this consideration, we obtain a complete characterization of the doubly commuting quotient modules of the Hardy module $H^2(\\mathbb{D}^n)$. We prove that a quotient module $\\clq$ of $H^2(\\mathbb{D}^n)$ ($n \\geq 2$) is doubly commuting if and only if \\[\\clq = \\clq_{\\Theta_1} \\otimes \\cdots \\otimes \\clq_{\\Theta_n},\\]where each $\\clq_{\\Theta_i}$ is either a one variable Jordan block $H^2(\\mathbb{D})/\\Theta_i H^2(\\mathbb{D})$ for some inner function $\\Theta_i$ or the Hardy module $H^2(\\mathbb{D})$ on the unit disk for all $i = 1, \\ldots, n$. We say that a submodule $\\cls$ of $H^2(\\mathbb{D}^n)$ is a co-doubly commuting if the quotient module $H^2(\\mathbb{D}^n)/\\cls$ is doubly commuting. We obtain a Beurling like theorem for the class of co-doubly commuting submodules of $H^2(\\mathbb{D}^n)$. We prove that a submodule $\\cls$ of $H^2(\\mathbb{D}^n)$ is co-doubly commuting if and only if \\[\\cls = \\mathop{\\sum}_{i=1}^m \\Theta_i H^2(\\mathbb{D}^n),\\]for some integer $m \\leq n$ and one variable inner functions $\\{\\Theta_i\\}_{i=1}^m$.", "revisions": [ { "version": "v3", "updated": "2013-04-15T20:29:04.000Z" } ], "analyses": { "subjects": [ "47A13", "47A15", "47A20", "47A45", "47A80", "46E20", "30H10" ], "keywords": [ "hardy module", "co-doubly commuting", "doubly commuting quotient modules", "complete characterization", "hardy space" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.1041S" } } }