{ "id": "1303.0240", "version": "v2", "published": "2013-03-01T18:09:33.000Z", "updated": "2013-04-11T16:39:34.000Z", "title": "The Subelliptic $\\infty$-Laplace System on Carnot-Carathéodory Spaces", "authors": [ "Nicholas Katzourakis" ], "comment": "16 pages, 2 figures, to appear in Advances in Nonlinear Analysis", "categories": [ "math.AP" ], "abstract": "Given a Carnot-Carath\\'eodory space $\\Om \\sub \\R^n$ with associated vector fields $X=\\{X_1,...,X_m\\}$, we derive the subelliptic $\\infty$-Laplace system for mappings $u : \\Om \\larrow \\R^N$, which reads \\[ \\label{1} \\De^X_\\infty u \\, :=\\, \\Big(Xu \\ot Xu + \\|Xu\\|^2 [Xu]^\\bot \\ot I \\Big) : XX u\\, = \\, 0 \\tag{1} \\] in the limit of the subelliptic $p$-Laplacian as $p\\ri \\infty$. Here $Xu$ is the horizontal gradient and $[Xu]^\\bot$ is the projection on its nullspace. Next, we identify the Variational Principle characterizing \\eqref{1}, which is the \"Euler-Lagrange PDE\" of the supremal functional \\[ \\label{2} E_\\infty(u,\\Om)\\ := \\ \\|Xu\\|_{L^\\infty(\\Om)} \\tag{2} \\] for an appropriately defined notion of \\emph{Horizontally $\\infty$-Minimal Mappings}. We also establish a maximum principle for $\\|Xu\\|$ for solutions to \\eqref{1}. These results extend previous work of the author \\cite{K1, K2} on vector-valued Calculus of Variations in $L^\\infty$ from the Euclidean to the subelliptic setting.", "revisions": [ { "version": "v2", "updated": "2013-04-11T16:39:34.000Z" } ], "analyses": { "subjects": [ "35J47", "35J62", "53C24", "49J99" ], "keywords": [ "laplace system", "carnot-carathéodory spaces", "subelliptic", "carnot-caratheodory space", "variational principle" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.0240K" } } }