{ "id": "1302.7265", "version": "v1", "published": "2013-02-28T17:23:12.000Z", "updated": "2013-02-28T17:23:12.000Z", "title": "An Inverse problem for the Magnetic Schrödinger Operator on a Half Space with partial data", "authors": [ "Valter Pohjola" ], "comment": "This is the article version of a Licentiate thesis. arXiv admin note: text overlap with arXiv:1104.0789 by other authors", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "In this paper we prove uniqueness for an inverse boundary value problem for the magnetic Schr\\\"odinger equation in a half space, with partial data. We prove that the curl of the magnetic potential $A$, when $A\\in W_{comp}^{1,\\infty}(\\ov{\\R^3_{-}},\\R^3)$, and the electric pontetial $q \\in L_{comp}^{\\infty}(\\ov{\\R^3_{-}},\\C)$ are uniquely determined by the knowledge of the Dirichlet-to-Neumann map on parts of the boundary of the half space.", "revisions": [ { "version": "v1", "updated": "2013-02-28T17:23:12.000Z" } ], "analyses": { "subjects": [ "35R30" ], "keywords": [ "magnetic schrödinger operator", "half space", "partial data", "inverse problem", "inverse boundary value problem" ], "tags": [ "dissertation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.7265P" } } }