{ "id": "1302.7084", "version": "v1", "published": "2013-02-28T05:00:58.000Z", "updated": "2013-02-28T05:00:58.000Z", "title": "Ill-posedness of the incompressible Navier-Stokes equations in $\\dot{F}^{-1,q}_{\\infty}({R}^3)$", "authors": [ "C. Deng", "X. Yao" ], "comment": "19. arXiv admin note: text overlap with arXiv:1302.5785", "categories": [ "math.AP" ], "abstract": "In this paper, authors show the ill-posedness of 3D incompressible Navier-Stokes equations in the critical Triebel-Lizorkin spaces $ \\dot{F}^{-1,q}_{\\infty} (\\mathbb{R}^3) $ for any $ q>2 $ in the sense that arbitrarily small initial data of $ \\dot{F}^{-1,q}_{\\infty}(\\mathbb{R}^3) $ can lead the corresponding solution to become arbitrarily large after an arbitrarily short time. In view of the well-posedness of 3D-incompressible Navier-Stokes equations in $ BMO^{-1} $ (i.e. the Triebel-Lizorkin space $ \\dot{F}^{-1,2}_{\\infty}(\\mathbb{R}^3) $) by Koch and Tataru, our work completes a dichotomy of well-posedness and ill-posedness in the Triebel-Lizorkin space framework depending on $ q=2 $ or $ q>2 $.", "revisions": [ { "version": "v1", "updated": "2013-02-28T05:00:58.000Z" } ], "analyses": { "keywords": [ "ill-posedness", "3d incompressible navier-stokes equations", "arbitrarily small initial data", "arbitrarily short time", "well-posedness" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.7084D" } } }