{ "id": "1302.6887", "version": "v4", "published": "2013-02-27T15:46:27.000Z", "updated": "2013-11-08T16:15:39.000Z", "title": "Soliton surfaces and generalized symmetries of integrable systems", "authors": [ "A. M. Grundland", "S. Post", "D. Riglioni" ], "comment": "17 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "In this paper, we discuss some specific features of symmetries of integrable systems which can be used to contruct the Fokas-Gel'fand formula for the immersion of 2D-soliton surfaces, associated with such systems, in Lie algebras. We establish the sufficient condition for the applicability of this formula. This condition requires the existence of two vector fields which generate a common symmetry of the initial system and its corresponding linear spectral problem. This means that these two fields have to be group-related and we determine an explicit form of this relation. It provides a criterion for the selection of symmetries suitable for the use of the Fokas-Gel'fand formula. We include some examples illustrating its application.", "revisions": [ { "version": "v4", "updated": "2013-11-08T16:15:39.000Z" } ], "analyses": { "subjects": [ "35Q53", "35Q58", "53A05" ], "keywords": [ "integrable systems", "generalized symmetries", "fokas-gelfand formula", "corresponding linear spectral problem", "vector fields" ], "tags": [ "journal article" ], "publication": { "doi": "10.1088/1751-8113/47/1/015201", "journal": "Journal of Physics A Mathematical General", "year": 2014, "month": "Jan", "volume": 47, "number": 1, "pages": "015201" }, "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014JPhA...47a5201G" } } }