{ "id": "1302.6730", "version": "v1", "published": "2013-02-27T11:36:49.000Z", "updated": "2013-02-27T11:36:49.000Z", "title": "Sufficient conditions for sampling and interpolation on the sphere", "authors": [ "J. Marzo", "B. Pridhnani" ], "categories": [ "math.CA", "math.FA", "math.SP" ], "abstract": "We obtain sufficient conditions for arrays of points, $\\mathcal{Z}=\\{\\mathcal{Z}(L) \\}_{L\\ge 1},$ on the unit sphere $\\mathcal{Z}(L)\\subset \\mathbb{S}^d,$ to be Marcinkiewicz-Zygmund and interpolating arrays for spaces of spherical harmonics. The conditions are in terms of the mesh norm and the separation radius of $\\mathcal{Z}(L)$.", "revisions": [ { "version": "v1", "updated": "2013-02-27T11:36:49.000Z" } ], "analyses": { "keywords": [ "sufficient conditions", "interpolation", "unit sphere", "mesh norm", "separation radius" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.6730M" } } }