{ "id": "1302.6151", "version": "v2", "published": "2013-02-25T16:51:20.000Z", "updated": "2013-04-12T12:27:02.000Z", "title": "Counting imaginary quadratic points via universal torsors", "authors": [ "Ulrich Derenthal", "Christopher Frei" ], "comment": "44 pages, minor revision", "categories": [ "math.NT", "math.AG" ], "abstract": "A conjecture of Manin predicts the distribution of rational points on Fano varieties. We provide a framework for proofs of Manin's conjecture for del Pezzo surfaces over imaginary quadratic fields, using universal torsors. Some of our tools are formulated over arbitrary number fields. As an application, we prove Manin's conjecture over imaginary quadratic fields K for the quartic del Pezzo surface S of singularity type A_3 with five lines given in P^4 by the equations vw - xy = vy + wy + xz = 0.", "revisions": [ { "version": "v2", "updated": "2013-04-12T12:27:02.000Z" } ], "analyses": { "subjects": [ "11D45", "14G05", "12A25" ], "keywords": [ "counting imaginary quadratic points", "universal torsors", "imaginary quadratic fields", "quartic del pezzo surface", "manins conjecture" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.6151D" } } }