{ "id": "1302.6083", "version": "v2", "published": "2013-02-25T13:19:21.000Z", "updated": "2014-04-02T14:28:02.000Z", "title": "Sub-exponential mixing of open systems with particle-disk interactions", "authors": [ "Tatiana Yarmola" ], "categories": [ "math-ph", "math.MP" ], "abstract": "We consider a class of mechanical particle systems with deterministic particle-disk interactions coupled to Gibbs heat reservoirs at possibly different temperatures. We show that there exists a unique (non-equilibrium) steady state. This steady state is mixing, but not exponentially mixing, and all initial distributions converge to it. In addition, for a class of initial distributions, the rates of converge to the steady state are sub-exponential.", "revisions": [ { "version": "v2", "updated": "2014-04-02T14:28:02.000Z" } ], "analyses": { "keywords": [ "open systems", "sub-exponential mixing", "steady state", "gibbs heat reservoirs", "deterministic particle-disk interactions" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s10955-014-1014-y", "journal": "Journal of Statistical Physics", "year": 2014, "month": "Aug", "volume": 156, "number": 3, "pages": 473 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014JSP...156..473Y" } } }