{ "id": "1302.5546", "version": "v3", "published": "2013-02-22T10:50:35.000Z", "updated": "2013-10-28T18:22:29.000Z", "title": "Existence of critical points with semi-stiff boundary conditions for singular perturbation problems in simply connected planar domains", "authors": [ "Xavier Lamy", "Petru Mironescu" ], "categories": [ "math.AP" ], "abstract": "Let $\\Omega$ be a smooth bounded simply connected domain in $\\mathbb{R}^2$. We investigate the existence of critical points of the energy $E_\\varepsilon (u)=1/2\\int_\\Omega |\\nabla u|^2+1/(4\\varepsilon^2)\\int_\\Omega (1-|u|^2)^2$, where the complex map $u$ has modulus one and prescribed degree $d$ on the boundary. Under suitable nondegeneracy assumptions on $\\Omega$, we prove existence of critical points for small $\\varepsilon$. More can be said when the prescribed degree equals one. First, we obtain existence of critical points in domains close to a disc. Next, we prove that critical points exist in \"most\" of the domains.", "revisions": [ { "version": "v3", "updated": "2013-10-28T18:22:29.000Z" } ], "analyses": { "subjects": [ "35J57", "35J61" ], "keywords": [ "critical points", "simply connected planar domains", "semi-stiff boundary conditions", "singular perturbation problems", "bounded simply connected domain" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.5546L" } } }