{ "id": "1302.5040", "version": "v2", "published": "2013-02-20T17:31:31.000Z", "updated": "2015-01-24T18:43:04.000Z", "title": "Dyson-Schwinger equations in the theory of computation", "authors": [ "Colleen Delaney", "Matilde Marcolli" ], "comment": "26 pages, LaTeX, final version, in \"Feynman Amplitudes, Periods and Motives\", Contemporary Mathematics, AMS 2015", "categories": [ "math-ph", "math.MP" ], "abstract": "Following Manin's approach to renormalization in the theory of computation, we investigate Dyson-Schwinger equations on Hopf algebras, operads and properads of flow charts, as a way of encoding self-similarity structures in the theory of algorithms computing primitive and partial recursive functions and in the halting problem.", "revisions": [ { "version": "v1", "updated": "2013-02-20T17:31:31.000Z", "comment": "20 pages, LaTeX", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-01-24T18:43:04.000Z" } ], "analyses": { "subjects": [ "68Q30", "81T15", "16T05", "18D50" ], "keywords": [ "dyson-schwinger equations", "computation", "partial recursive functions", "manins approach", "encoding self-similarity structures" ], "note": { "typesetting": "LaTeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1220427, "adsabs": "2013arXiv1302.5040D" } } }