{ "id": "1302.4668", "version": "v1", "published": "2013-02-19T16:53:47.000Z", "updated": "2013-02-19T16:53:47.000Z", "title": "Waiting Time Distribution for the Emergence of Superpatterns", "authors": [ "Anant Godbole", "Martha Liendo" ], "comment": "17 pages", "categories": [ "math.PR" ], "abstract": "Consider a sequence X_1, X_2,... of i.i.d. uniform random variables taking values in the alphabet set {1,2,...,d}. A k-superpattern is a realization of X_1,...,X_t that contains, as an embedded subsequence, each of the non-order-isomorphic subpatterns of length k. We focus on the non-trivial case of d=k=3 and study the waiting time distribution of tau=inf{t>=7: X_1,...,X_t is a superpattern}", "revisions": [ { "version": "v1", "updated": "2013-02-19T16:53:47.000Z" } ], "analyses": { "subjects": [ "60C05" ], "keywords": [ "waiting time distribution", "superpattern", "uniform random variables", "alphabet set", "non-trivial case" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.4668G" } } }