{ "id": "1302.4506", "version": "v1", "published": "2013-02-19T02:32:39.000Z", "updated": "2013-02-19T02:32:39.000Z", "title": "More symmetric polynomials related to p-norms", "authors": [ "Ivo Klemes" ], "comment": "27 pages", "categories": [ "math.CA" ], "abstract": "It is known that the elementary symmetric polynomials $e_k(x)$ have the property that if $ x, y \\in [0,\\infty)^n$ and $e_k(x) \\leq e_k(y)$ for all $k$, then $||x||_p \\leq ||y||_p$ for all real $0\\leq p \\leq 1$, and moreover $||x||_p \\geq ||y||_p$ for $1\\leq p \\leq 2$ provided $||x||_1 =||y||_1$. Previously the author proved this kind of property for $p>2$, for certain polynomials $F_{k,r}(x)$ which generalize the $e_k(x)$. In this paper we give two additional generalizations of this type, involving two other families of polynomials. When $x$ consists of the eigenvalues of a matrix $A$, we give a formula for the polynomials in terms of the entries of $A$, generalizing sums of principal $k \\times k$ subdeterminants.", "revisions": [ { "version": "v1", "updated": "2013-02-19T02:32:39.000Z" } ], "analyses": { "subjects": [ "47A30", "05E05", "15A15" ], "keywords": [ "elementary symmetric polynomials", "additional generalizations", "subdeterminants", "eigenvalues" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.4506K" } } }