{ "id": "1302.4401", "version": "v1", "published": "2013-02-18T19:55:25.000Z", "updated": "2013-02-18T19:55:25.000Z", "title": "f-vectors implying vertex decomposability", "authors": [ "Michał Lasoń" ], "journal": "Discrete & Computational Geometry 49 (2013), no. 2, 296-301", "doi": "10.1007/s00454-012-9477-6", "categories": [ "math.CO", "math.AC" ], "abstract": "We prove that if a pure simplicial complex of dimension d with n facets has the least possible number of (d-1)-dimensional faces among all complexes with n faces of dimension d, then it is vertex decomposable. This answers a question of J. Herzog and T. Hibi. In fact we prove a generalization of their theorem using combinatorial methods.", "revisions": [ { "version": "v1", "updated": "2013-02-18T19:55:25.000Z" } ], "analyses": { "subjects": [ "05E45", "05E40", "13F55" ], "keywords": [ "f-vectors implying vertex decomposability", "pure simplicial complex", "combinatorial methods" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.4401L" } } }