{ "id": "1302.4199", "version": "v1", "published": "2013-02-18T09:39:20.000Z", "updated": "2013-02-18T09:39:20.000Z", "title": "Analysis of the heat kernel of the Dirichlet-to-Neumann operator", "authors": [ "A. F. M. ter Elst", "E. M. Ouhabaz" ], "categories": [ "math.AP" ], "abstract": "We prove Poisson upper bounds for the kernel $K$ of the semigroup generated by the Dirichlet-to-Neumann operator if the underlying domain is bounded and has a $C^\\infty$-boundary. We also prove Poisson bounds for $K_z$ for all $z$ in the right half-plane and for all its derivatives.", "revisions": [ { "version": "v1", "updated": "2013-02-18T09:39:20.000Z" } ], "analyses": { "subjects": [ "35K08", "58G11", "47B47" ], "keywords": [ "dirichlet-to-neumann operator", "heat kernel", "poisson upper bounds", "right half-plane", "poisson bounds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.4199T" } } }