{ "id": "1302.4103", "version": "v3", "published": "2013-02-17T18:40:53.000Z", "updated": "2014-12-26T12:26:06.000Z", "title": "Schauder estimation for solutions of Poisson's equation with Neumann boundary condition", "authors": [ "Giacomo Nardi" ], "categories": [ "math.AP" ], "abstract": "In this work we consider the Neumann problem for the Laplace operator and we prove an existence result in the H\\\"older spaces and obtain Schauder estimates. According to our knowledge this result is not explicitly proved in the several works devoted to the Schauder theory, where similar theorems are proved in detail for the Dirichlet and oblique derivative problems. Our contribution is to make explicit the existence and the estimate for the Neumann problem.", "revisions": [ { "version": "v2", "updated": "2013-04-12T14:56:55.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v3", "updated": "2014-12-26T12:26:06.000Z" } ], "analyses": { "keywords": [ "neumann boundary condition", "poissons equation", "schauder estimation", "neumann problem", "oblique derivative problems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.4103N" } } }