{ "id": "1302.4074", "version": "v2", "published": "2013-02-17T14:49:30.000Z", "updated": "2013-07-03T03:06:26.000Z", "title": "Trace asymptotics formula for the Schrödinger operators with constant magnetic fields", "authors": [ "Mouez Dimassi", "Anh Tuan Duong" ], "comment": "21 pages", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "In this paper, we consider the 2D- Schr\\\"odinger operator with constant magnetic field $H(V)=(D_x-By)^2+D_y^2+V_h(x,y)$, where $V$ tends to zero at infinity and $h$ is a small positive parameter. We will be concerned with two cases: the semi-classical limit regime $V_h(x,y)=V(h x,h y)$, and the large coupling constant limit case $V_h(x,y)=h^{-\\delta} V(x,y)$. We obtain a complete asymptotic expansion in powers of $h^2$ of ${\\rm tr}(\\Phi(H(V),h))$, where $\\Phi(\\cdot,h)\\in C^\\infty_0(\\mathbb R;\\mathbb R)$. We also give a Weyl type asymptotics formula with optimal remainder estimate of the counting function of eigenvalues of $H(V)$.", "revisions": [ { "version": "v2", "updated": "2013-07-03T03:06:26.000Z" } ], "analyses": { "subjects": [ "81Q10", "35J10", "35P20", "35C20", "47F05" ], "keywords": [ "constant magnetic field", "trace asymptotics formula", "schrödinger operators", "large coupling constant limit case", "weyl type asymptotics formula" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.4074D" } } }