{ "id": "1302.3840", "version": "v1", "published": "2013-02-15T18:32:18.000Z", "updated": "2013-02-15T18:32:18.000Z", "title": "On the Ramsey number of the triangle and the cube", "authors": [ "Gonzalo Fiz Pontiveros", "Simon Griffiths", "Robert Morris", "David Saxton", "Jozef Skokan" ], "comment": "16 pages", "categories": [ "math.CO" ], "abstract": "The Ramsey number r(K_3,Q_n) is the smallest integer N such that every red-blue colouring of the edges of the complete graph K_N contains either a red n-dimensional hypercube, or a blue triangle. Almost thirty years ago, Burr and Erd\\H{o}s conjectured that r(K_3,Q_n) = 2^{n+1} - 1 for every n \\in \\N, but the first non-trivial upper bound was obtained only recently, by Conlon, Fox, Lee and Sudakov, who proved that r(K_3,Q_n) \\le 7000 \\cdot 2^n. Here we show that r(K_3,Q_n) = (1 + o(1)) 2^{n+1} as n \\to \\infty.", "revisions": [ { "version": "v1", "updated": "2013-02-15T18:32:18.000Z" } ], "analyses": { "keywords": [ "ramsey number", "first non-trivial upper bound", "blue triangle", "complete graph", "red n-dimensional hypercube" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.3840F" } } }