{ "id": "1302.3081", "version": "v2", "published": "2013-02-13T13:33:12.000Z", "updated": "2013-06-02T19:10:02.000Z", "title": "Distinct distances on two lines", "authors": [ "Micha Sharir", "Adam Sheffer", "József Solymosi" ], "categories": [ "math.CO", "cs.CG" ], "abstract": "Let P_1 and P_2 be two sets of points in the plane, so that P_1 is contained in a line L_1, P_2 is contained in a line L_2, and L_1 and L_2 are neither parallel nor orthogonal. Then the number of distinct distances determined by the pairs of P_1xP_2 is \\Omega(\\min{|P_1|^{2/3}|P_2|^{2/3},|P_1|^2, |P_2|^2}). In particular, if |P_1|=|P_2|=m, then the number of these distinct distances is \\Omega(m^{4/3}), improving upon the previous bound \\Omega(m^{5/4}) of Elekes.", "revisions": [ { "version": "v2", "updated": "2013-06-02T19:10:02.000Z" } ], "analyses": { "keywords": [ "orthogonal", "distinct distances" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.3081S" } } }