{ "id": "1302.3012", "version": "v1", "published": "2013-02-13T08:28:46.000Z", "updated": "2013-02-13T08:28:46.000Z", "title": "Standard Young Tableaux and Colored Motzkin Paths", "authors": [ "Sen-Peng Eu", "Tung-Shan Fu", "Justin T. Hou", "Te-Wei Hsu" ], "comment": "21 pages", "categories": [ "math.CO" ], "abstract": "In this paper, we propose a notion of colored Motzkin paths and establish a bijection between the $n$-cell standard Young tableaux (SYT) of bounded height and the colored Motzkin paths of length $n$. This result not only gives a lattice path interpretation of the standard Young tableaux but also reveals an unexpected intrinsic relation between the set of SYTs with at most $2d+1$ rows and the set of SYTs with at most 2d rows.", "revisions": [ { "version": "v1", "updated": "2013-02-13T08:28:46.000Z" } ], "analyses": { "subjects": [ "05A19", "05A15" ], "keywords": [ "colored motzkin paths", "cell standard young tableaux", "lattice path interpretation", "2d rows", "unexpected intrinsic relation" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.3012E" } } }