{ "id": "1302.2486", "version": "v2", "published": "2013-02-11T14:37:30.000Z", "updated": "2013-09-11T12:15:00.000Z", "title": "The doubling map with asymmetrical holes", "authors": [ "Paul Glendinning", "Nikita Sidorov" ], "comment": "26 pages, 3 figures", "categories": [ "math.DS" ], "abstract": "Let $00$; $\\mathcal J(a,b)$ is uncountable of zero Hausdorff dimension; $\\mathcal J(a,b)$ is of positive Hausdorff dimension. {enumerate} In particular, we show that (iv) is always the case if \\[ b-a<\\frac14\\prod_{n=1}^\\infty \\bigl(1-2^{-2^n}\\bigr)\\approx 0.175092 \\] and that this bound is sharp. As a corollary, we give a full description of first and second order critical holes introduced in \\cite{SSC} for the doubling map. Furthermore, we show that our model yields a continuum of \"routes to chaos\" via arbitrary sequences of products of natural numbers, thus generalizing the standard route to chaos via period doubling.", "revisions": [ { "version": "v2", "updated": "2013-09-11T12:15:00.000Z" } ], "analyses": { "subjects": [ "28D05", "37B10" ], "keywords": [ "doubling map", "asymmetrical holes", "zero hausdorff dimension", "second order critical holes", "scenarios holds" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.2486G" } } }