{ "id": "1302.2359", "version": "v4", "published": "2013-02-10T20:28:49.000Z", "updated": "2013-08-16T00:20:20.000Z", "title": "Binary Quadratic forms and the Fourier coefficients of certain weight 1 eta-quotients", "authors": [ "Alexander Berkovich", "Frank Patane" ], "comment": "27 pages", "categories": [ "math.NT" ], "abstract": "We state and prove an identity which represents the most general eta-products of weight 1 by binary quadratic forms. We discuss the utility of binary quadratic forms in finding a multiplicative completion for certain eta-quotients. We then derive explicit formulas for the Fourier coefficients of certain eta-quotients of weight 1 and level 47, 71, 135,648 1024, and 1872.", "revisions": [ { "version": "v4", "updated": "2013-08-16T00:20:20.000Z" } ], "analyses": { "subjects": [ "11B65", "11E16", "11E20", "11E25", "11F11", "11F20", "11F27", "11E16", "14K25" ], "keywords": [ "binary quadratic forms", "fourier coefficients", "eta-quotients", "general eta-products", "derive explicit formulas" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.2359B" } } }