{ "id": "1302.2204", "version": "v1", "published": "2013-02-09T07:52:55.000Z", "updated": "2013-02-09T07:52:55.000Z", "title": "Traces of Sobolev functions on regular surfaces in infinite dimensions", "authors": [ "Pietro Celada", "Alessandra Lunardi" ], "categories": [ "math.AP" ], "abstract": "In a Banach space $X$ endowed with a nondegenerate Gaussian measure, we consider Sobolev spaces of real functions defined in a sublevel set $O= \\{x\\in X:\\;G(x) <0\\}$ of a Sobolev nondegenerate function $G:X\\mapsto \\R$. We define the traces at $G^{-1}(0)$ of the elements of $W^{1,p}(O, \\mu)$ for $p>1$, as elements of $L^1(G^{-1}(0), \\rho)$ where $\\rho$ is the surface measure of Feyel and de La Pradelle. The range of the trace operator is contained in $L^q(G^{-1}(0), \\rho)$ for $1\\leq q