{ "id": "1302.1986", "version": "v2", "published": "2013-02-08T10:36:02.000Z", "updated": "2013-02-11T08:07:00.000Z", "title": "Method for solving an iterative functional equation $A^{2^n}(x)=F(x)$", "authors": [ "Dmitry Kruchinin", "Vladimir Kruchinin" ], "comment": "11 pages", "categories": [ "math.CO", "math.CA", "math.FA", "math.NT" ], "abstract": "Using the notion of the composita, we obtain a method of solving iterative functional equations of the form $A^{2^n}(x)=F(x)$, where $F(x)=\\sum_{n>0} f(n)x^n$, $f(1)\\neq 0$. We prove that if $F(x)=\\sum_{n>0} f(n)x^n$ has integer coefficients, then the generating function $A(x)=\\sum_{n>0}a(n)x^n$, which is obtained from the iterative functional equation $4A(A(x))=F(4x)$, has integer coefficients. Key words: iterative functional equation, composition of generating functions, composita.", "revisions": [ { "version": "v2", "updated": "2013-02-11T08:07:00.000Z" } ], "analyses": { "subjects": [ "39B12" ], "keywords": [ "integer coefficients", "generating function", "solving iterative functional equations", "composition" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }