{ "id": "1302.1730", "version": "v1", "published": "2013-02-07T12:36:37.000Z", "updated": "2013-02-07T12:36:37.000Z", "title": "Subalgebra depths within the path algebra of an acyclic quiver", "authors": [ "Lars Kadison", "Christopher J. Young" ], "comment": "14 pp. to appear in Proceedings A.G.M.P. Conf. Mulhouse, 2011, Springer", "categories": [ "math.RT" ], "abstract": "Constraints are given on the depth of diagonal subalgebras in generalized triangular matrix algebras. The depth of the top subalgebra B = A /rad A in a finite, connected, acyclic quiver algebra A over an algebraically closed field K is then computed. Also the depth of the primary arrow subalgebra 1K + rad A = B in A is obtained. The two types of subalgebras have depths 3 and 4 respectively, independent of the number of vertices. An upper bound on depth is obtained for the quotient of a subalgebra pair.", "revisions": [ { "version": "v1", "updated": "2013-02-07T12:36:37.000Z" } ], "analyses": { "keywords": [ "path algebra", "subalgebra depths", "primary arrow subalgebra 1k", "generalized triangular matrix algebras", "acyclic quiver algebra" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.1730K" } } }