{ "id": "1302.1352", "version": "v1", "published": "2013-02-06T13:04:33.000Z", "updated": "2013-02-06T13:04:33.000Z", "title": "Theory of spin Hall magnetoresistance", "authors": [ "Yan-Ting Chen", "Saburo Takahashi", "Hiroyasu Nakayama", "Matthias Althammer", "Sebastian T. B. Goennenwein", "Eiji Saitoh", "Gerrit E. W. Bauer" ], "journal": "Phys. Rev. B 87, 144411 (2013)", "doi": "10.1103/PhysRevB.87.144411", "categories": [ "cond-mat.mes-hall" ], "abstract": "We present a theory of the spin Hall magnetoresistance (SMR) in multilayers made from an insulating ferromagnet F, such as yttrium iron garnet (YIG), and a normal metal N with spin-orbit interactions, such as platinum (Pt). The SMR is induced by the simultaneous action of spin Hall and inverse spin Hall effects and therefore a non-equilibrium proximity phenomenon. We compute the SMR in F$|$N and F$|$N$|$F layered systems, treating N by spin-diffusion theory with quantum mechanical boundary conditions at the interfaces in terms of the spin-mixing conductance. Our results explain the experimentally observed spin Hall magnetoresistance in N$|$F bilayers. For F$|$N$|$F spin valves we predict an enhanced SMR amplitude when magnetizations are collinear. The SMR and the spin-transfer torques in these trilayers can be controlled by the magnetic configuration.", "revisions": [ { "version": "v1", "updated": "2013-02-06T13:04:33.000Z" } ], "analyses": { "subjects": [ "85.75.-d", "72.15.Gd", "73.43.Qt", "72.25.Mk" ], "keywords": [ "spin hall magnetoresistance", "inverse spin hall effects", "quantum mechanical boundary conditions", "non-equilibrium proximity phenomenon", "yttrium iron garnet" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review B", "year": 2013, "month": "Apr", "volume": 87, "number": 14, "pages": 144411 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013PhRvB..87n4411C" } } }