{ "id": "1302.1249", "version": "v1", "published": "2013-02-06T02:46:10.000Z", "updated": "2013-02-06T02:46:10.000Z", "title": "A note on Yamabe constants of products with hyperbolic spaces", "authors": [ "Guillermo Henry", "Jimmy Petean" ], "comment": "15 pages, 5 figures", "categories": [ "math.DG" ], "abstract": "We study the H^n-Yamabe constants of Riemannian products (H^n \\times M^m, g_h^n +g), where (M,g) is a compact Riemannian manifold of constant scalar curvature and g_h^n is the hyperbolic metric on H^n. Numerical calculations can be carried out due to the uniqueness of (positive, finite energy) solutions of the equation \\Delta u -\\lambda u + u^q =0 on hyperbolic space H^n under appropriate bounds on the parameters \\lambda, q, as shown by G. Mancini and K. Sandeep. We do explicit numerical estimates in the cases (n,m)=(2,2),(2,3) and (3,2).", "revisions": [ { "version": "v1", "updated": "2013-02-06T02:46:10.000Z" } ], "analyses": { "keywords": [ "hyperbolic space", "yamabe constants", "compact riemannian manifold", "constant scalar curvature", "riemannian products" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.1249H" } } }