{ "id": "1302.1132", "version": "v1", "published": "2013-02-05T17:52:04.000Z", "updated": "2013-02-05T17:52:04.000Z", "title": "An extension of the Wright's 3/2-theorem for the KPP-Fisher delayed equation", "authors": [ "Karel Hasik", "Sergei Trofimchuk" ], "comment": "8 pages, submitted", "categories": [ "math.CA" ], "abstract": "We present a short proof of the following natural extension of the famous Wright's 3/2-stability theorem: the conditions $\\tau \\leq 3/2, \\ c \\geq 2$ imply the presence of the positive traveling fronts (not necessarily monotone) $u = \\phi(x\\cdot \\nu+ct), \\ |\\nu| =1,$ in the delayed KPP-Fisher equation $u_t(t,x) = \\Delta u(t,x) + u(t,x)(1-u(t-\\tau,x))$, $u\\geq 0,$ $x \\in \\R^m.$", "revisions": [ { "version": "v1", "updated": "2013-02-05T17:52:04.000Z" } ], "analyses": { "subjects": [ "34K10", "35K57", "92D25" ], "keywords": [ "kpp-fisher delayed equation", "delayed kpp-fisher equation", "short proof", "natural extension", "famous wrights" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.1132H" } } }