{ "id": "1302.1053", "version": "v1", "published": "2013-02-05T14:56:34.000Z", "updated": "2013-02-05T14:56:34.000Z", "title": "Pulsating fronts for nonlocal dispersion and KPP nonlinearity", "authors": [ "Jerome Coville", "Juan Davila", "Salome Martinez" ], "comment": "Annales de l'Institut Henri Poincar\\'e Analyse non lin\\'eaire (2011)", "doi": "10.1016/j.anihpc.2012.07.005", "categories": [ "math.AP" ], "abstract": "In this paper we are interested in propagation phenomena for nonlocal reaction-diffusion equations of the type: $\\delta_tu = J \\times u - u + f (x, u) t \\in R^+, x \\in R^N$, where J is a probability density and f is a KPP nonlinearity periodic in the x variables. Under suitable assumptions we establish the existence of pulsating fronts describing the invasion of the 0 state by a heterogeneous state. We also give a variational characterization of the minimal speed of such pulsating fronts and exponential bounds on the asymptotic behavior of the solution.", "revisions": [ { "version": "v1", "updated": "2013-02-05T14:56:34.000Z" } ], "analyses": { "keywords": [ "pulsating fronts", "nonlocal dispersion", "nonlocal reaction-diffusion equations", "kpp nonlinearity periodic", "probability density" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013AnIHP..30..179C" } } }