{ "id": "1302.0888", "version": "v3", "published": "2013-02-04T22:23:15.000Z", "updated": "2016-06-17T12:28:01.000Z", "title": "Large deviations for random walks in a random environment on a strip", "authors": [ "Jonathon Peterson" ], "categories": [ "math.PR" ], "abstract": "We consider a random walk in a random environment (RWRE) on the strip of finite width $\\mathbb{Z} \\times \\{1,2,\\ldots,d\\}$. We prove both quenched and averaged large deviation principles for the position and the hitting times of the RWRE. Moreover, we prove a variational formula that relates the quenched and averaged rate functions, thus extending a result of Comets, Gantert, and Zeitouni for nearest-neighbor RWRE on $\\mathbb{Z}$", "revisions": [ { "version": "v2", "updated": "2013-03-13T14:24:13.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v3", "updated": "2016-06-17T12:28:01.000Z" } ], "analyses": { "subjects": [ "60K37", "60F10" ], "keywords": [ "random walk", "random environment", "averaged large deviation principles", "nearest-neighbor rwre", "finite width" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.0888P" } } }