{ "id": "1302.0607", "version": "v2", "published": "2013-02-04T08:03:12.000Z", "updated": "2014-12-07T07:09:08.000Z", "title": "Homotopical Height", "authors": [ "Indranil Biswas", "Mahan Mj", "Dishant Pancholi" ], "comment": "Final version, to appear in International Journal of Mathematics. 37 pgs no figs", "categories": [ "math.GT", "math.AG", "math.AT", "math.SG" ], "abstract": "Given a group $G$ and a class of manifolds $\\CC$ (e.g. symplectic, contact, K\\\"ahler etc), it is an old problem to find a manifold $M_G \\in \\CC$ whose fundamental group is $G$. This article refines it: for a group $G$ and a positive integer $r$ find $M_G \\in \\CC$ such that $\\pi_1(M_G)=G$ and $\\pi_i(M_G)=0$ for $1