{ "id": "1302.0146", "version": "v1", "published": "2013-02-01T11:21:29.000Z", "updated": "2013-02-01T11:21:29.000Z", "title": "Boundedness of maximal functions on non-doubling manifolds with ends", "authors": [ "Xuan Thinh Duong", "Ji Li", "Adam Sikora" ], "categories": [ "math.AP", "math.FA" ], "abstract": "Let $M$ be a manifold with ends constructed in \\cite{GS} and $\\Delta$ be the Laplace-Beltrami operator on $M$. In this note, we show the weak type $(1,1)$ and $L^p$ boundedness of the Hardy-Littlewood maximal function and of the maximal function associated with the heat semigroup $\\M_\\Delta f(x)=\\sup_{t> 0} |\\exp (-t\\Delta)f(x)| $ on $L^p(M)$ for $1 < p \\le \\infty$. The significance of these results comes from the fact that $M$ does not satisfies the doubling condition.", "revisions": [ { "version": "v1", "updated": "2013-02-01T11:21:29.000Z" } ], "analyses": { "subjects": [ "42B15", "35P99" ], "keywords": [ "non-doubling manifolds", "boundedness", "hardy-littlewood maximal function", "weak type", "laplace-beltrami operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.0146T" } } }