{ "id": "1301.7349", "version": "v1", "published": "2013-01-30T20:18:47.000Z", "updated": "2013-01-30T20:18:47.000Z", "title": "Non-commutative f-divergence functional", "authors": [ "Mohammad Sal Moslehian", "Mohsen Kian" ], "comment": "22 pages, to appear in Math. Nachr", "categories": [ "math.FA", "math.OA" ], "abstract": "We introduce the non-commutative $f$-divergence functional $\\Theta(\\widetilde{A},\\widetilde{B}):=\\int_TB_t^{\\frac{1}{2}}f\\left(B_t^{-\\frac{1}{2}} A_tB_t^{-\\frac{1}{2}}\\right)B_t^{\\frac{1}{2}}d\\mu(t)$ for an operator convex function $f$, where $\\widetilde{A}=(A_t)_{t\\in T}$ and $\\widetilde{B}=(B_t)_{t\\in T}$ are continuous fields of Hilbert space operators and study its properties. We establish some relations between the perspective of an operator convex function $f$ and the non-commutative $f$-divergence functional. In particular, an operator extension of Csisz\\'{a}r's result regarding $f$-divergence functional is presented. As some applications, we establish a refinement of the Choi--Davis--Jensen operator inequality, obtain some unitarily invariant norm inequalities and give some results related to the Kullback--Leibler distance.", "revisions": [ { "version": "v1", "updated": "2013-01-30T20:18:47.000Z" } ], "analyses": { "subjects": [ "47A63", "46L05", "26D15", "15A60", "60E15" ], "keywords": [ "non-commutative f-divergence functional", "operator convex function", "hilbert space operators", "unitarily invariant norm inequalities", "choi-davis-jensen operator inequality" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.7349S" } } }