{ "id": "1301.7103", "version": "v1", "published": "2013-01-29T23:50:22.000Z", "updated": "2013-01-29T23:50:22.000Z", "title": "Lifting $N$-dimensional Galois representations to characteristic zero", "authors": [ "Jayanta Manoharmayum" ], "comment": "28 pages", "categories": [ "math.NT" ], "abstract": "Let $F$ be a number field, let $N\\geq 3$ be an integer, and let $k$ be a finite field of characteristic $\\ell$. We show that if $\\rb:G_F\\longrightarrow GL_N(k)$ is a continuous representation with image of $\\rb$ containing $SL_N(k)$ then, under moderate conditions at primes dividing $\\ell\\infty$, there is a continuous representation $\\rho:G_F\\longrightarrow GL_N(W(k))$ unramified outside finitely many primes with $\\rb\\sim\\rho\\mod{\\ell}$.", "revisions": [ { "version": "v1", "updated": "2013-01-29T23:50:22.000Z" } ], "analyses": { "subjects": [ "11F80" ], "keywords": [ "dimensional galois representations", "characteristic zero", "continuous representation", "number field", "finite field" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.7103M" } } }