{ "id": "1301.6825", "version": "v2", "published": "2013-01-29T03:26:31.000Z", "updated": "2014-01-29T00:21:55.000Z", "title": "Musielak-Orlicz Campanato Spaces and Applications", "authors": [ "Yiyu Liang", "Dachun Yang" ], "journal": "J. Math. Anal. Appl. 406 (2013), 307-322", "categories": [ "math.CA", "math.FA" ], "abstract": "Let $\\varphi: \\mathbb R^n\\times [0,\\infty)\\to[0,\\infty)$ be such that $\\varphi(x,\\cdot)$ is an Orlicz function and $\\varphi(\\cdot,t)$ is a Muckenhoupt $A_\\infty(\\mathbb R^n)$ weight uniformly in $t$. In this article, the authors introduce the Musielak-Orlicz Campanato space ${\\mathcal L}_{\\varphi,q,s}({\\mathbb R}^n)$ and, as an application, prove that some of them is the dual space of the Musielak-Orlicz Hardy space $H^{\\varphi}(\\mathbb R^n)$, which in the case when $q=1$ and $s=0$ was obtained by L. D. Ky [arXiv: 1105.0486]. The authors also establish a John-Nirenberg inequality for functions in ${\\mathcal L}_{\\varphi,1,s}({\\mathbb R}^n)$ and, as an application, the authors also obtain several equivalent characterizations of ${\\mathcal L}_{\\varphi,q,s}({\\mathbb R}^n)$, which, in return, further induce the $\\varphi$-Carleson measure characterization of ${\\mathcal L}_{\\varphi,1,s}({\\mathbb R}^n)$.", "revisions": [ { "version": "v2", "updated": "2014-01-29T00:21:55.000Z" } ], "analyses": { "subjects": [ "42B25", "42B30", "42B35", "46E30" ], "keywords": [ "musielak-orlicz campanato space", "application", "carleson measure characterization", "musielak-orlicz hardy space", "dual space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.6825L" } } }