{ "id": "1301.6607", "version": "v2", "published": "2013-01-28T17:02:59.000Z", "updated": "2013-12-05T19:09:21.000Z", "title": "Estimating the covariance of random matrices", "authors": [ "Pierre Youssef" ], "comment": "29 pages", "categories": [ "math.PR" ], "abstract": "We extend to the matrix setting a recent result of Srivastava-Vershynin about estimating the covariance matrix of a random vector. The result can be in- terpreted as a quantified version of the law of large numbers for positive semi-definite matrices which verify some regularity assumption. Beside giving examples, we dis- cuss the notion of log-concave matrices and give estimates on the smallest and largest eigenvalues of a sum of such matrices.", "revisions": [ { "version": "v2", "updated": "2013-12-05T19:09:21.000Z" } ], "analyses": { "keywords": [ "random matrices", "estimating", "covariance matrix", "largest eigenvalues", "large numbers" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.6607Y" } } }