{ "id": "1301.6586", "version": "v1", "published": "2013-01-28T16:04:28.000Z", "updated": "2013-01-28T16:04:28.000Z", "title": "The parameter derivatives $[\\partial^{2}P_ν(z)/\\partialν^{2}]_{ν=0}$ and $[\\partial^{3}P_ν(z)/\\partialν^{3}]_{ν=0}$, where $P_ν(z)$ is the Legendre function of the first kind", "authors": [ "Radosław Szmytkowski" ], "comment": "5 pages", "categories": [ "math.CA", "math-ph", "math.MP" ], "abstract": "We derive explicit expressions for the parameter derivatives $[\\partial^{2}P_{\\nu}(z)/\\partial\\nu^{2}]_{\\nu=0}$ and $[\\partial^{3}P_{\\nu}(z)/\\partial\\nu^{3}]_{\\nu=0}$, where $P_{\\nu}(z)$ is the Legendre function of the first kind. It is found that {displaymath} \\frac{\\partial^{2}P_{\\nu}(z)}{\\partial\\nu^{2}}\\bigg|_{\\nu=0} =-2\\Li_{2}\\frac{1-z}{2}, {displaymath} where $\\Li_{2}z$ is the dilogarithm (this formula has been recently arrived at by Schramkowski using \\emph{Mathematica}), and that {displaymath} \\frac{\\partial^{3}P_{\\nu}(z)}{\\partial\\nu^{3}}\\bigg|_{\\nu=0} =12\\Li_{3}\\frac{z+1}{2}-6\\ln\\frac{z+1}{2}\\Li_{2}\\frac{z+1}{2} -\\pi^{2}\\ln\\frac{z+1}{2}-12\\zeta(3), {displaymath} where $\\Li_{3}z$ is the polylogarithm of order 3 and $\\zeta(s)$ is the Riemann zeta function.", "revisions": [ { "version": "v1", "updated": "2013-01-28T16:04:28.000Z" } ], "analyses": { "subjects": [ "33C05", "33B30" ], "keywords": [ "legendre function", "first kind", "parameter derivatives", "displaymath", "riemann zeta function" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.6586S" } } }