{ "id": "1301.6430", "version": "v1", "published": "2013-01-28T02:57:25.000Z", "updated": "2013-01-28T02:57:25.000Z", "title": "Some Bernstein functions and integral representations concerning harmonic and geometric means", "authors": [ "Feng Qi", "Xiao-Jing Zhang", "Wen-Hui Li" ], "comment": "19 pages", "categories": [ "math.CA", "math.CV" ], "abstract": "It is general knowledge that the harmonic mean $H(x,y)=\\frac2{\\frac1x+\\frac1y}$ and that the geometric mean $G(x,y)=\\sqrt{xy}\\,$, where $x$ and $y$ are two positive numbers. In the paper, the authors show by several approaches that the harmonic mean $H_{x,y}(t)=H(x+t,y+t)$ and the geometric mean $G_{x,y}(t)=G(x+t,y+t)$ are all Bernstein functions of $t\\in(-\\min\\{x,y\\},\\infty)$ and establish integral representations of the means $H_{x,y}(t)$ and $G_{x,y}(t)$.", "revisions": [ { "version": "v1", "updated": "2013-01-28T02:57:25.000Z" } ], "analyses": { "subjects": [ "26E60", "26A48", "30E20", "44A10" ], "keywords": [ "integral representations concerning harmonic", "geometric mean", "bernstein functions", "harmonic mean", "general knowledge" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.6430Q" } } }