{ "id": "1301.5811", "version": "v1", "published": "2013-01-24T15:17:39.000Z", "updated": "2013-01-24T15:17:39.000Z", "title": "The kernel bundle of a holomorphic Fredholm family", "authors": [ "Thomas Krainer", "Gerardo A. Mendoza" ], "comment": "16 pages", "categories": [ "math.AP", "math.DG" ], "abstract": "Let $\\Y$ be a smooth connected manifold, $\\Sigma\\subset\\C$ an open set and $(\\sigma,y)\\to\\scrP_y(\\sigma)$ a family of unbounded Fredholm operators $D\\subset H_1\\to H_2$ of index 0 depending smoothly on $(y,\\sigma)\\in \\Y\\times \\Sigma$ and holomorphically on $\\sigma$. We show how to associate to $\\scrP$, under mild hypotheses, a smooth vector bundle $\\kerb\\to\\Y$ whose fiber over a given $y\\in \\Y$ consists of classes, modulo holomorphic elements, of meromorphic elements $\\phi$ with $\\scrP_y\\phi$ holomorphic. As applications we give two examples relevant in the general theory of boundary value problems for elliptic wedge operators.", "revisions": [ { "version": "v1", "updated": "2013-01-24T15:17:39.000Z" } ], "analyses": { "subjects": [ "58J32", "58J05", "35J48", "35J58" ], "keywords": [ "holomorphic fredholm family", "kernel bundle", "boundary value problems", "smooth vector bundle", "elliptic wedge operators" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.5811K" } } }