{ "id": "1301.5507", "version": "v1", "published": "2013-01-23T14:10:52.000Z", "updated": "2013-01-23T14:10:52.000Z", "title": "Strong orthogonality between the Möbius function, additive characters, and Fourier coefficients of cusp forms", "authors": [ "Étienne Fouvry", "Satadal Ganguly" ], "doi": "10.1112/S0010437X13007732", "categories": [ "math.NT" ], "abstract": "Let $\\nu_{f}(n)$ be the $n$-th nomalized Fourier coefficient of a Hecke--Maass cusp form $f$ for ${\\rm SL}(2,\\Z)$ and let $\\alpha$ be a real number. We prove strong oscillations of the argument of $\\nu_{f}(n)\\mu (n) \\exp (2\\pi i n \\alpha)$ as $n$ takes consecutive integral values.", "revisions": [ { "version": "v1", "updated": "2013-01-23T14:10:52.000Z" } ], "analyses": { "keywords": [ "möbius function", "strong orthogonality", "additive characters", "th nomalized fourier coefficient", "hecke-maass cusp form" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.5507F" } } }