{ "id": "1301.5263", "version": "v1", "published": "2013-01-22T18:23:24.000Z", "updated": "2013-01-22T18:23:24.000Z", "title": "A Coloring Problem for Sturmian and Episturmian Words", "authors": [ "Aldo de Luca", "Elena V. Pribavkina", "Luca Q. Zamboni" ], "categories": [ "math.CO", "cs.DM" ], "abstract": "We consider the following open question in the spirit of Ramsey theory: Given an aperiodic infinite word $w$, does there exist a finite coloring of its factors such that no factorization of $w$ is monochromatic? We show that such a coloring always exists whenever $w$ is a Sturmian word or a standard episturmian word.", "revisions": [ { "version": "v1", "updated": "2013-01-22T18:23:24.000Z" } ], "analyses": { "subjects": [ "68R15" ], "keywords": [ "coloring problem", "aperiodic infinite word", "standard episturmian word", "ramsey theory", "open question" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.5263D" } } }