{ "id": "1301.5029", "version": "v1", "published": "2013-01-21T22:20:13.000Z", "updated": "2013-01-21T22:20:13.000Z", "title": "Markoff-Rosenberger triples in arithmetic progression", "authors": [ "Enrique González-Jiménez", "José M. Tornero" ], "comment": "To appear in Journal of Symbolic Computation", "journal": "J. Symbolic Comput. 53 (2013), 53-63", "doi": "10.1016/j.jsc.2012.11.003", "categories": [ "math.NT", "math.AG" ], "abstract": "We study the solutions of the Rosenberg--Markoff equation ax^2+by^2+cz^2 = dxyz (a generalization of the well--known Markoff equation). We specifically focus on looking for solutions in arithmetic progression that lie in the ring of integers of a number field. With the help of previous work by Alvanos and Poulakis, we give a complete decision algorithm, which allows us to prove finiteness results concerning these particular solutions. Finally, some extensive computations are presented regarding two particular cases: the generalized Markoff equation x^2+y^2+z^2 = dxyz over quadratic fields and the classic Markoff equation x^2+y^2+z^2 = 3xyz over an arbitrary number field.", "revisions": [ { "version": "v1", "updated": "2013-01-21T22:20:13.000Z" } ], "analyses": { "keywords": [ "arithmetic progression", "markoff-rosenberger triples", "arbitrary number field", "classic markoff equation", "complete decision algorithm" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.5029G" } } }