{ "id": "1301.5004", "version": "v1", "published": "2013-01-21T21:06:26.000Z", "updated": "2013-01-21T21:06:26.000Z", "title": "Planar functions and perfect nonlinear monomials over finite fields", "authors": [ "Michael Zieve" ], "comment": "10 pages", "categories": [ "math.CO", "cs.IT", "math.IT", "math.NT" ], "abstract": "The study of finite projective planes involves planar functions, namely, functions f : F_q --> F_q such that, for each nonzero a in F_q, the function c --> f(c+a) - f(c) is a bijection on F_q. Planar functions are also used in the construction of DES-like cryptosystems, where they are called perfect nonlinear functions. We determine all planar functions on F_q of the form c --> c^t, under the assumption that q >= (t-1)^4. This implies two conjectures of Hernando, McGuire and Monserrat. Our arguments also yield a new proof of a conjecture of Segre and Bartocci from 1971 about monomial hyperovals in finite Desarguesian projective planes.", "revisions": [ { "version": "v1", "updated": "2013-01-21T21:06:26.000Z" } ], "analyses": { "subjects": [ "51E20", "11T06", "11T71", "05B05" ], "keywords": [ "planar functions", "perfect nonlinear monomials", "finite fields", "finite desarguesian projective planes", "perfect nonlinear functions" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.5004Z" } } }