{ "id": "1301.4868", "version": "v2", "published": "2013-01-21T14:03:35.000Z", "updated": "2013-07-14T06:46:05.000Z", "title": "Uniqueness and nondegeneracy of positive solutions of $\\Ds u+u=u^p$ in $\\R^N$ when $s$ is close to 1", "authors": [ "Mouhamed Moustapha Fall", "Enrico Valdinoci" ], "categories": [ "math.AP" ], "abstract": "We consider the equation $\\Ds u+u=u^p$, with $s\\in(0,1)$ in the subcritical range of $p$. We prove that if $s$ is sufficiently close to 1 the equation possesses a unique minimizer, which is nondegenerate.", "revisions": [ { "version": "v2", "updated": "2013-07-14T06:46:05.000Z" } ], "analyses": { "keywords": [ "positive solutions", "uniqueness", "nondegeneracy", "equation possesses" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.4868M" } } }