{ "id": "1301.4663", "version": "v5", "published": "2013-01-20T14:44:44.000Z", "updated": "2014-03-01T23:35:27.000Z", "title": "Two Weight Inequality for the Hilbert Transform: A Real Variable Characterization, II", "authors": [ "Michael T Lacey" ], "comment": "Final Version, to appear in Duke", "categories": [ "math.CA", "math.CV" ], "abstract": "A conjecture of Nazarov--Treil--Volberg on the two weight inequality for the Hilbert transform is verified. Given two non-negative Borel measures u and w on the real line, the Hilbert transform $H_u$ maps $L^2(u)$ to $L^2(w)$ if and only if the pair of measures of satisfy a Poisson $A_2$ condition, and dual collections of testing conditions, uniformly over all intervals. This strengthens a prior characterization of Lacey-Sawyer-Shen-Uriate-Tuero arxiv:1201.4319. The latter paper includes a `Global to Local' reduction. This article solves the Local problem.", "revisions": [ { "version": "v5", "updated": "2014-03-01T23:35:27.000Z" } ], "analyses": { "keywords": [ "hilbert transform", "real variable characterization", "weight inequality", "non-negative borel measures", "real line" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.4663L" } } }