{ "id": "1301.4585", "version": "v1", "published": "2013-01-19T18:54:18.000Z", "updated": "2013-01-19T18:54:18.000Z", "title": "Crossed Products and MF algebras", "authors": [ "Weihua Li", "Stefanos Orfanos" ], "comment": "9 pages", "categories": [ "math.OA" ], "abstract": "We prove that the crossed product AxG of a unital finitely generated MF algebra A by a discrete finitely generated amenable residually finite group G is an MF algebra, provided that the action is almost periodic. This generalizes a result of Hadwin and Shen. We also construct two examples of crossed product C*-algebras whose BDF Ext semigroups are not groups.", "revisions": [ { "version": "v1", "updated": "2013-01-19T18:54:18.000Z" } ], "analyses": { "subjects": [ "46L05" ], "keywords": [ "crossed product", "amenable residually finite group", "generated amenable residually finite", "finitely generated amenable", "unital finitely generated mf algebra" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.4585L" } } }