{ "id": "1301.4574", "version": "v1", "published": "2013-01-19T17:00:14.000Z", "updated": "2013-01-19T17:00:14.000Z", "title": "The Bishop-Phelps-Bollobás property for numerical radius in $\\ell_1(\\mathbb{C})$", "authors": [ "Antonio J. Guirao", "Olena Kozhushkina" ], "categories": [ "math.FA" ], "abstract": "We show that the set of bounded linear operators from $X$ to $X$ admits a Bishop-Phelps-Bollob\\'as type theorem for numerical radius whenever $X$ is $\\ell_1(\\mathbb{C})$ or $c_0(\\mathbb{C})$. As an essential tool we provide two constructive versions of the classical Bishop-Phelps-Bollob\\'as theorem for $\\ell_1(\\mathbb{C})$.", "revisions": [ { "version": "v1", "updated": "2013-01-19T17:00:14.000Z" } ], "analyses": { "subjects": [ "46B20", "47A12" ], "keywords": [ "numerical radius", "bishop-phelps-bollobás property", "bishop-phelps-bollobas type theorem", "essential tool", "bounded linear operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.4574G" } } }