{ "id": "1301.4086", "version": "v1", "published": "2013-01-17T13:11:56.000Z", "updated": "2013-01-17T13:11:56.000Z", "title": "Subspaces of $L_p$ that embed into $L_p(μ)$ with $μ$ finite", "authors": [ "William B. Johnson", "Gideon Schechtman" ], "categories": [ "math.FA" ], "abstract": "Enflo and Rosenthal proved that $\\ell_p(\\aleph_1)$, $1 < p < 2$, does not (isomorphically) embed into $L_p(\\mu)$ with $\\mu$ a finite measure. We prove that if $X$ is a subspace of an $L_p$ space, $1< p < 2$, and $\\ell_p(\\aleph_1)$ does not embed into $X$, then $X$ embeds into $L_p(\\mu)$ for some finite measure $\\mu$.", "revisions": [ { "version": "v1", "updated": "2013-01-17T13:11:56.000Z" } ], "analyses": { "subjects": [ "46E30", "46B26", "46B03" ], "keywords": [ "finite measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.4086J" } } }