{ "id": "1301.3998", "version": "v1", "published": "2013-01-17T07:25:26.000Z", "updated": "2013-01-17T07:25:26.000Z", "title": "Action of dihedral groups", "authors": [ "Ming-chang Kang" ], "categories": [ "math.AG" ], "abstract": "Let $K$ be any field and $G$ be a finite group. Let $G$ act on the rational function field $K(x_g: \\ g \\in G)$ by $K$-automorphisms defined by $g \\cdot x_h=x_{gh}$ for any $g, \\ h \\in G$. Denote by $K(G)$ the fixed field $K(x_g: \\ g \\in G)^G$. Noether's problem asks whether $K(G)$ is rational (=purely transcendental) over $K$. We will give a brief survey of Noether's problem for abelian groups and dihedral groups, and will show that $\\Bbb Q(D_n)$ is rational over $\\Bbb Q$ for $n \\le 10$.", "revisions": [ { "version": "v1", "updated": "2013-01-17T07:25:26.000Z" } ], "analyses": { "subjects": [ "14E08", "13A50", "12F12" ], "keywords": [ "dihedral groups", "rational function field", "noethers problem asks", "finite group", "abelian groups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.3998K" } } }