{ "id": "1301.3638", "version": "v1", "published": "2013-01-16T10:02:36.000Z", "updated": "2013-01-16T10:02:36.000Z", "title": "A finiteness condition on the coefficients of the probabilistic zeta function", "authors": [ "Duong Hoang Dung", "Andrea Lucchini" ], "categories": [ "math.GR" ], "abstract": "We discuss whether finiteness properties of a profinite group $G$ can be deduced from the coefficients of the probabilistic zeta function $P_G(s)$. In particular we prove that if $P_G(s)$ is rational and all but finitely many non abelian composition factors of $G$ are isomorphic to $PSL(2,p)$ for some prime $p$, then $G$ contains only finitely many maximal subgroups.", "revisions": [ { "version": "v1", "updated": "2013-01-16T10:02:36.000Z" } ], "analyses": { "subjects": [ "20E18", "20D06", "20P05", "11M41" ], "keywords": [ "probabilistic zeta function", "finiteness condition", "coefficients", "non abelian composition factors", "profinite group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.3638H" } } }